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Motivation
• Extra-Solar Planets Advanced Concepts NRA

– Category 2 – Space mission for TPF technology demonstration
– Cost guideline $300M

• Phase 1 study – technology demo only
– Three objectives, in this order of priority:

• Adhere to $300M cap
• Maximize technology demonstration value to TPF
• Enable useful scientific investigations

– This “unusual” ordering led to a design which is smaller and simpler than a 
science-oriented interferometer would be

• Phase 2 study – add compelling science
– Upgrades which would cost-effectively enable science

Suggest scope for a possible technology and science precursor mission
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The “Phase 1” CINDIS design
• Technology demonstration mission for TPF interferometers 
• First nulling interferometry in space, on a fixed structure 
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Features of the “Phase 1” system
• Baseline ~2 meters

– No science requirements for a minimum baseline
– Non-deploying optical structure fits horizontally in launch shroud (simplest 

approach)
– Optional soft structure (1st mode~ 5Hz); strongback for launch & early observations

• Demonstrates vibration isolation for longer TPF structures; further model validation

• Warm-side active isolation system 
– Suppresses vibrations to a level sufficient for a deep null
– Low-risk way to provide a quiet platform for the nulling demonstrations

• Stored cryogen 
– Cools Si:As detectors for low noise
– Cheapest and most reliable cooling system for a short (6-9 month) mission

• Drift-away orbit
– Good thermal stability
– Easy passive cooling
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Optical schematic (Phase 1)

• Standard 2-aperture design
(Bracewell)

• Controls (sensors, actuators)
for tip-tilt and piston

• Nulling combiner sums optical 
fields with a wavelength-
independent 180° phase offset
– Several designs under development

around the world

• Spatial filters after nulling combiner
• Low-resolution spectrometer (λ/∆λ ~ 3–20)
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Instrument Features (Phase 1 system)
• Nulling combiner is entirely contained in Solid-H2 cryostat

– 8 kg H2 provided

• Wavelength range 6-12 µm 
• Strongback for launch
• Deployable 

thermal shield
– 50K passive 

cooling

• Gamma-alumina
struts

• 2 m2 radiators
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Instrument Controls Diagram (Phase 1)
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Spacecraft features (Phase 1 system)

• Based on the Ball RS-300 small 
S/C functional architecture 

• Single-string 
– Minimizes mass & cost
– High probability of  mission 

success for 6-month mission
– Heritage for multi-year 

single-string buses
• Ball’s ASPEN integrated 

hardware & software avionics 
suite 

• Earth-trailing drift-away orbit
• Delta 2326-9.5 launch vehicle
• Cold gas reaction control system

Delta 2326-9.5 launch shroud



10/14/03 CINDIS — Cold Interferometric Nulling Demonstration in Space 9

Spacecraft features (Phase 1 system)

Parameter Value 
Launch Date June 1, 2007 
Launch Vehicle Delta 2326 
Mission Duration 6 months 
Orbit Type Earth-Trailing, Heliocentric 
Max Earth Range 0.07 AU 
Max Sun Range 1.04 AU 
SPE Angle at L+30 D 56 degrees 
 

Parameter Allocation Predicted 
Performance 

S/C Bus Mass 245 kg 198 kg 
S/C Bus Power 208 W 177 W 
Instrument Power Allocation 100 W 65 W 
Attitude Control 3-axis stabilized 3-axis stabilized 
Pointing Accuracy (X & Y, 3-σ per axis) 3 arcsec 1.5 arcsec 
Pointing Accuracy (Z axis, 3-σ per axis) 30 arcsec 15 arcsec 
Incident Solar and Bus Parasitic Heat 

Load Transmitted to Instrument 
< 0.5 W < 0.4 W 

Sunshield Off-Pointing (maximum angle 
from sun line) 

30°  30°  

Instrument Data Storage <154 MB / week 154 MB / week 
Downlink Data Rate 100 kbps > 380 kbps 
Uplink Data Rate 500 bps 2 kbps 
 

• Based on the Ball RS-300 small 
S/C functional architecture

• Single-string 
– Minimizes mass & cost
– High probability of  mission 

success for 6-month mission
– Heritage for multi-year 

single-string buses
• Ball’s ASPEN integrated 

hardware & software avionics 
suite 

• Earth-trailing drift-away orbit
• Delta 2326-9.5 launch vehicle
• Cold gas reaction control system
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Pointing and delay jitter performance with 
Honeywell  VISS

Honeywell 
VISS

Pointing and delay jitter meet 
requirements with

5 Hz truss (soft like 40m TPF)
+

Honeywell’s Vibration Isolation 
& Suppression System (VISS) at 
bus-instrument interface (warm)

+
Passive dampers (0.1%) on truss
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Controls Allocations for Structural Jitter in 
Pointing and Optical Delay 

Assumes instrument control systems can suppress remaining jitter
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Architecture changes for Phase 2 CINDIS
• Dual Bracewell (4 telescopes)

– Control of systematic error sensitivity → sufficient for finding planets
– Suppress signals from exo-zodi → reduce/eliminate confusion source
– Fully demonstrates the same technologies needed for TPF

• Longer baseline (15m+)
– Angular resolution adequate to find known extrasolar giant planets
– Structural vibration control scalable to full size TPF

• Expandable truss
– Efficient packaging, stable structure

• Apertures 0.4 m diameter
– Adequate for controls, planet detection
– Preliminary value, TBR
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Mission requirements (Phase 2)
• Principal objectives

– Demonstrate direct detection of planets at near-TPF-level sensitivity
– Deliver a wealth of performance data to inform TPF system engineering

Demo vs. planet search 180°180°45°Rotation around LOS

Need access to known target 
stars

>45° 30° 30° Sky coverage (maximum 
angle from anti-sun)

Now have specific stars

Demonstrating instrument 
vs. seeing planets

“Instrument similar to TPF” 
vs. “do planet science”

Added req’t to observe 
some planets

Keep systematics <20% of 
planet (1–10 × earth)

Keep small to aid stability 

Remarks

40150 mas / 
80 mas

No req’tAngular resolution

6 / 30

5-10 hr

7-12 µm

2.5×10–7 / 
2.5×10–8

10-5 / 10–6

CINDIS Phase 2
req’t/goal

30-1506-10Number of stars

5-10 hr0.08 hourStability time-scale

7-17 µm>6 µmOptical passband

2.5×10-82.5×10–7 / 
2.5×10–8

Null depth stability (planet-
mimicking systematics)

10-610-5 / 10–6Null depth

TPFCINDIS Phase 1
req’t/goal
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Planet detection depends on both null depth 
and long-term stability of the system

• Photon counting noise is not the only limitation to planet sensitivity
• Also must consider systematic variations which mimic planet signals

• Without chopping, a major concern 
is systematics at ~DC (few milliHertz)

– Example: 2 aperture Bracewell
– Stellar leakage + 

instrument thermal emission + 
astronomical backgrounds
must be stable to < ~1/5 planet

– 2.5×10–8 of star flux at few mHz

• Phase-chopping architectures 
put planet signature at ~0.1 Hz
– Insensitive to mHz signal drifts
– BUT other systematic problems 

appear on the same time scales

• Technology objective: 
demonstrate controls adequate 
to counteract dual Bracewell 
systematic errors
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Tighter budget for null depth makes it 
easier to meet stability requirements

• Equal budget allocations for 5 terms
• Tighter null depth looser stability req’t ~ 3% of tolerance
• Looser null depth tighter stability req’t ~ 0.3% of tolerance
• Tighter fractional stability of these quantities is a higher risk

 Requirement
(10-5 null) 

Stability for 
“Earth” detection 

Goal  
(10-6 null) 

Stability for 
“Earth” detection

Intensity match 2.8×10-3 8×10-6 9×10-4 2.6×10-5 
Delay jitter 4.5 nm 0.013 nm 1.4 nm 0.04 nm 
Polarization rotation 10 arcmin 0.03 arcmin 3 arcmin 0.09 arcmin 
Tip-tilt (sky angles) 
 (Airy radii) 

9 mas 
1.5×10-3  

0.026 mas  
4.3×10-6  

2.8 mas  
4.7×10-4  

0.083 mas  
1.4×10-5  

Wavefront error 4.5 nm rms 0.013 nm rms 1.4 nm rms 0.04 nm rms 
 

Single Bracewell
example
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Stellar companions as science targets
• Known companions: Older EGPs, brown dwarfs
• Expected/unknown: Hot young EGPs, EGPs not found by RV
• Prefer older planetary systems 

– Lower EZ dust levels → easier planet detection
– Best TPF candidate stars will be older

• Prefer contrast ~10–5 or fainter
– Take on technical challenge comparable to TPF, not 100-1000x easier
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Known extra-solar giant planets
• “Desert” – gap in distribution of planets vs. angle at 100-150 mas
• Six planets have 

– Contrast >3×10–6

– Max angle > 150 mas 
– Requires >76° sky 

coverage

• Six planets have 
– Contrast >1×10–6

– Max angle > 96 mas
– Ecliptic latitude < 30°

• Second option preferred
– Only need a sunshade for 30° from anti-sun
– Beyond the desert increasing length gives more planets
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Phase 2 CINDIS in the 
Delta 2326-9.5 launch shroud

• Expandable truss, 15m+
– “Able mast” or equivalent
– Studies indicate this construction can be 

made sufficiently stable

• Telescopes mount on top
– Apertures 0.4m diam, TBR

• Multi-layer sunshade deploys with 
boom
– Allows >30° from anti-sun
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Dual Bracewell performance allocations
• Performance budget tables 

– Null depth 
– Systematic errors

multi-
plier Leak Leak 

variation
Total star leakage (tot) 2.09E-05 1.00E-07

Stellar disk leak 1.26E-05 4.51E-10
Instrument null depth 8.33E-06 1.00E-07

Leak due to phase 5.72E-06 8.78E-08
Phase errors × 2 2.39E-03 ↑

OPD 2.05E-03 8.42E-08
Focus -9.50E-04 1.79E-08
Other WFE 7.78E-04 1.72E-08

Leak due to amplitude 2.33E-06 4.45E-08
Amplitude errors × 2 -1.43E-03 ↑

Tip-tilt × 2 -6.37E-04 3.06E-08
Coma × 2 4.40E-06 1.10E-08
astig × 2 -3.54E-05 1.01E-08
trefoil etc. × 2 -1.32E-06 1.88E-09
focus+sphab × 1 -8.68E-05

Ampl imbalance × 2 1.48E-07 -2.85E-08
Polarization × 2 2.80E-07 5.00E-09

biref 7.00E-08
diatten 7.00E-08

Cophasing of nullers A & B 1.03E-08
Amplitude-phase cross-terms 1.50E-08

Optics thermal emission 8.65E-08
Solar stray light 8.65E-08
Exo-zodiacal light 8.65E-08
Local zodiacal light 8.65E-08

Nuller A-B diff (A+B)/2 avg variation Stability
2.05E-03 2.05E-03 4.10E-05 piston 3.27E-09 m jitter 6.53E-11
2.70E-03 2.70E-03 5.40E-05 focus 4.30E-09 m rms 8.59E-11
1.35E-02 1.35E-02 2.70E-04 sph_ab 2.15E-08 m rms 4.30E-10

4.00E-02 4.00E-02 8.00E-04 tip/tilt 8.91E-07 rad 1.78E-08
2.00E-02 2.00E-02 8.00E-04 coma 31.83 nm 1.27 nm
1.00E-02 1.00E-02 1.00E-03 astig 15.92 nm 1.59 nm
2.00E-03 2.00E-03 1.00E-03 trefoil etc 3.18 nm 1.59 nm

0.20% 2.00E-05 ampl imbal (λ indep)
ndence 8.17E-04 cophasing 1.30 nm

1.67E-05 Effective baseline 2.50E-04 m
2.00E-05 zeta 1.00E-04 m

RMS aberr phases (rad)



10/14/03 CINDIS — Cold Interferometric Nulling Demonstration in Space 20

Data harvest
In addition to science measurements, CINDIS will produce

a rich characterization of the instrument performance

• Extensive suite of diagnostic sensors is integrated into the design 
• Verify performance of components & subsystem controls

– Active delay and pointing control
– Passive amplitude and polarization matching 

• Verify system null depth and null stability budgets
• Study thermal control & stray light
• Compare instrument performance to budgets and model predictions

– Establishes a strong foundation for TPF system engineering
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CINDIS Phase 1 Optical System Model

CINDIS optical layout

CINDIS optical model (Simulink/MATLAB) –
Ball optical toolbox



10/14/03 CINDIS — Cold Interferometric Nulling Demonstration in Space 22

CINDIS Phase 1 optical path
• Folding beams out to the side, as shown, 

gives an achromatic π phase between 
telescope beams

• Dielectric plate technique also a
candidate for achromatic π phase

• Choice between techniques is TBD

Starlight
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CINDIS Phase 2 deployed

New IMOS based truss structure
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CINDIS Phase 2 optical schematic
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Residual from Tilt of Telescope Axis 
with FSM Correction

• Residual due to effect of telescope working off-axis
– 100 nrad tilt = 0.0033 Airy, telescope diam 0.4m
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Intensity at spatial filter entrance 
Normalized to 1 at constructive fringe 

For 60× larger 
tilt than this 

(6µrad), stellar 
leak after 

spatial filter 
~5×10–9

For just this tilt 
(0.1 µrad), 

stellar leak after 
spatial filter 
~2.5×10–9
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Residual from distortion within telescope body
• Tilt primary with respect to secondary

-1.5 -1 -0.5 0 0.5 1 1.5

x 10 -5

10-14

10-12

10-10

10-8

10-6

Sky FOV (arcsec)

Spatial 
filter

For 3µrad tilt, 
stellar leak after 
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~2×10–9
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For 30× smaller
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nm), stellar leak 
after spatial 

filter ~2.5×10–9

• Move primary to secondary (10nm).
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First 6 structural bending mode shapes 
of a 40m truss

Ends move in y-z plane
in phase
4.2 Hz

Torsional mode
5.3 Hz

y
z

x

Ends move in x-y plane
in phase 
5.6 Hz

Ends move in y-z plane
out of phase
6.2 Hz

Ends move in x-y plane
out of phase
7.4 Hz

Ends move in x-y plane
in phase, double bend
15.5 Hz
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Control System Bandwidth and Sensor Noise
• For rejection at 40 Hz, sample rate must be >1000Hz.
• Assume photon throughput of 10%

– Photons/update = 1.69×104

• Control system rejection greater than 10x for modes 
with a frequency out to 18 Hz.

• If these limits leave inadequate performance, the base 
motion must be reduced another way

– Laser metrology?

Control system 
performance for 
first 6 bending 

modes
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RW Model - Disturbance Source

• Cluster of 5 RW on single pallet
• Forcing components increase by (wheel speed)2.  

RW internal resonance at 90 Hz included
• Radial forcing harmonics shown in figures for 

small fast RW (HR0610) Fundamental wheel 
harmonic (3rd& 4th) provides dominant 
disturbance.

• Wheels are balanced to HST levels to minimize 
out-of-balance induced forces and torques.

• Disturbance is applied to the RW node of the 
coupled structural/optical  model 10
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Residual Vibration from Reaction Wheels -
Isolation and translation mirror rejection 

• Motion of telescopes from RW input, residual jitter is RMS of 
total displacement vector.

• Isolator natural frequency at 0.5 and 1 Hz
• Control BW's of 10, 20 50, 100 Hz for isolator set at 1 Hz 
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Residual Vibration from Reaction Wheels -
Isolation and Fast Steering Mirror rejection

• Motion of telescopes from RW input, residual jitter is RMS of 
total rotational motion 

• Isolator natural frequency at 0.5 and 1 Hz
• Control BW's of 10, 20 50, 100 Hz for isolator set at 1 Hz 
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Temperatures with Beryllium Truss, 
Sun Normal to Sunshield

Temperatures, K
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Conclusions
• CINDIS Phase 1 was a carefully targeted, conservative, low risk,

$300M technology demonstration for TPF
– Forego scientific objectives to keep cost and cost risk low
– Tailor instrument to prove instrument technologies to fullest extent

• CINDIS Phase 2 adds compelling science
– Studies of known extra-solar giant planets, search for others
– TPF science and technology precursor – advances all key technologies to 

TRL 8 or 9 except for formation flying interferometry

• Nulling interferometry is hard
– Chopping architectures (4 apertures or more) are needed for TPF

• Systematic errors are greatly mitigated, but significant vulnerabilities remain
• Sensors & controls may tame these new problems, but concepts are complex

– Stability requirements for chopping architectures are difficult to understand 
and challenging to achieve

– Chopping nulling interferometer tech demo needed for TPF
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